Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gas geochemistry and seismotectonics: a review

Identifieur interne : 000250 ( Main/Exploration ); précédent : 000249; suivant : 000251

Gas geochemistry and seismotectonics: a review

Auteurs : Jean-Paul Toutain [France] ; Jean-Claude Baubron [France]

Source :

RBID : ISTEX:AE517F95086858E601A040174D2E502EB83130F2

Descripteurs français

English descriptors

Abstract

Abstract: Publications on soil and spring gases have been examined regarding their relationships with both tectonic and seismic activities. The main sources, behaviours and uses of species detected in soils and springs are displayed, and their mode of sampling and analysing briefly described. The main patterns of degassing in soils are described and we outline the wide range of geochemical signatures as the result of both permeability and mineralogical contrasts. Because thermomineral waters have been in contact with great volumes of crustal rocks at various depths, spring gases might be more representative of the local environment than soil gases. Moreover, gas signature comparisons show that spring gases are much more enriched with deep gases and slightly contaminated by atmospheric gases. Therefore, they can be considered as better samples for identifying precursors of earthquakes. Environmental perturbations are examined, and it is shown from divergent cases that pressure, temperature, soil moisture or earth tides may generate very high perturbations of the degassing process. Such effects demonstrate that no systematic correction law can be proposed and that removing external contributions from gas concentrations must be performed case by case. This demonstrates therefore the need for the simultaneous measurement of external parameters during gas monitoring. A qualitative examination of about 150 claimed precursors proposed in the literature has been reviewed. As noted by previous authors, anomalies appear at distances sometimes much greater than typical source dimensions, and occur in the field of strain higher than 10−9, most of them being in the field of strain higher than 10−8. Taking into account the very high heterogeneity of such a set of data, we can suggest that amplitudes of gas anomalies are independent of both magnitudes and epicentral distances of related earthquakes, suggesting local conditions to control amplitudes. On the contrary, precursory time and duration of anomalies seem to increase both with magnitudes and epicentral distances. Abundant evidence demonstrates the major role of crustal fluids in the earthquake cycle. Many works have outlined the fact that crustal instabilities can appear as the result of low stress/strain perturbations during loading. It has been suggested that motion of fluids may occur at various scales, from microcrack fluid transfer up to changes of hydraulic levels of water tables. The study of subsequent anomalies is expected to supply a tool for earthquake prediction. Following previous authors, we outline the need for further methodological improvements, including the setting up of multiparameter station networks and the simultaneous recording of the main external parameters (atmospheric pressure, water and air temperature, soil moisture) for signal processing.

Url:
DOI: 10.1016/S0040-1951(98)00295-9


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Gas geochemistry and seismotectonics: a review</title>
<author>
<name sortKey="Toutain, Jean Paul" sort="Toutain, Jean Paul" uniqKey="Toutain J" first="Jean-Paul" last="Toutain">Jean-Paul Toutain</name>
</author>
<author>
<name sortKey="Baubron, Jean Claude" sort="Baubron, Jean Claude" uniqKey="Baubron J" first="Jean-Claude" last="Baubron">Jean-Claude Baubron</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AE517F95086858E601A040174D2E502EB83130F2</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0040-1951(98)00295-9</idno>
<idno type="url">https://api.istex.fr/document/AE517F95086858E601A040174D2E502EB83130F2/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000511</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000511</idno>
<idno type="wicri:Area/Istex/Curation">000511</idno>
<idno type="wicri:Area/Istex/Checkpoint">000188</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000188</idno>
<idno type="wicri:doubleKey">0040-1951:1999:Toutain J:gas:geochemistry:and</idno>
<idno type="wicri:Area/Main/Merge">000256</idno>
<idno type="wicri:Area/Main/Curation">000250</idno>
<idno type="wicri:Area/Main/Exploration">000250</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Gas geochemistry and seismotectonics: a review</title>
<author>
<name sortKey="Toutain, Jean Paul" sort="Toutain, Jean Paul" uniqKey="Toutain J" first="Jean-Paul" last="Toutain">Jean-Paul Toutain</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Observatoire Midi-Pyrénées, UMR CNRS 5563, Laboratoire de Géochimie, 38 rue des trente-six ponts, Toulouse</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baubron, Jean Claude" sort="Baubron, Jean Claude" uniqKey="Baubron J" first="Jean-Claude" last="Baubron">Jean-Claude Baubron</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>BRGM, Service Géologique National, 45060 Orléans La Source</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Orléans La Source</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Tectonophysics</title>
<title level="j" type="abbrev">TECTO</title>
<idno type="ISSN">0040-1951</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">304</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="27">27</biblScope>
</imprint>
<idno type="ISSN">0040-1951</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0040-1951</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active faults</term>
<term>Andreas</term>
<term>Andreas fault</term>
<term>Anomaly</term>
<term>Appl</term>
<term>Aquifer</term>
<term>Atmospheric pressure</term>
<term>Background values</term>
<term>Baubron</term>
<term>Baubron tectonophysics</term>
<term>Brgm report</term>
<term>Bulgaria</term>
<term>Carbon dioxide</term>
<term>Central california</term>
<term>Central japan</term>
<term>Continuous monitoring</term>
<term>Crust</term>
<term>Crustal</term>
<term>Degassing</term>
<term>Dioxide</term>
<term>Discrete measurements</term>
<term>Dubois</term>
<term>Earth planet</term>
<term>Earth tides</term>
<term>Earthquake</term>
<term>Earthquake magnitudes</term>
<term>Earthquake prediction</term>
<term>Epicentral</term>
<term>Epicentral distance</term>
<term>Epicentral distances</term>
<term>External factors</term>
<term>Fault</term>
<term>Fault activity</term>
<term>Fleischer</term>
<term>Focal mechanisms</term>
<term>Fracture</term>
<term>Geochemical</term>
<term>Geochemical anomalies</term>
<term>Geochemical precursors</term>
<term>Geochemistry</term>
<term>Geol</term>
<term>Geophys</term>
<term>Goddart</term>
<term>Granitic areas</term>
<term>Groundwater</term>
<term>Haicheng</term>
<term>Hauksson</term>
<term>Heterogeneity</term>
<term>Himachal pradesh</term>
<term>Humanante</term>
<term>Hydrothermal</term>
<term>Hydrothermal systems</term>
<term>Igarashi</term>
<term>Italian alps</term>
<term>Klusman</term>
<term>Kobe earthquake</term>
<term>Latter case</term>
<term>Lett</term>
<term>Literature data</term>
<term>Local conditions</term>
<term>Lungling</term>
<term>Main parameters</term>
<term>Mass spectrometer</term>
<term>Meteorological effects</term>
<term>Methane</term>
<term>Nagamine</term>
<term>Normal faults</term>
<term>Permeability</term>
<term>Pinault</term>
<term>Precursor</term>
<term>Precursory</term>
<term>Precursory time</term>
<term>Precursory time intervals</term>
<term>Prospection geochimique</term>
<term>Pure appl</term>
<term>Radon</term>
<term>Radon activities</term>
<term>Radon anomalies</term>
<term>Radon concentration</term>
<term>Radon concentrations</term>
<term>Radon data</term>
<term>Radon emanation</term>
<term>Radon monitoring</term>
<term>Radon variations</term>
<term>Reimer</term>
<term>Relative amplitudes</term>
<term>Sato</term>
<term>Science reviews</term>
<term>Seismic</term>
<term>Seismic activity</term>
<term>Seismic faults</term>
<term>Seismicity</term>
<term>Shapiro</term>
<term>Signal processing</term>
<term>Soil gases</term>
<term>Soil moisture</term>
<term>Southern spain</term>
<term>Spring gases</term>
<term>Sugisaki</term>
<term>Sugiura</term>
<term>Tangshan</term>
<term>Tangshan earthquake</term>
<term>Taschkent</term>
<term>Tectonic</term>
<term>Tectonophysics</term>
<term>Teng</term>
<term>Thermal springs</term>
<term>Thermal waters</term>
<term>Toutain</term>
<term>Transects</term>
<term>Travertine deposits</term>
<term>Uctuations</term>
<term>Uids</term>
<term>Uranium exploration</term>
<term>Virk</term>
<term>Volcanic</term>
<term>Volcanic environments</term>
<term>Wakita</term>
<term>Wide range</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active faults</term>
<term>Andreas</term>
<term>Andreas fault</term>
<term>Anomaly</term>
<term>Appl</term>
<term>Aquifer</term>
<term>Atmospheric pressure</term>
<term>Background values</term>
<term>Baubron</term>
<term>Baubron tectonophysics</term>
<term>Brgm report</term>
<term>Bulgaria</term>
<term>Carbon dioxide</term>
<term>Central california</term>
<term>Central japan</term>
<term>Continuous monitoring</term>
<term>Crust</term>
<term>Crustal</term>
<term>Degassing</term>
<term>Dioxide</term>
<term>Discrete measurements</term>
<term>Dubois</term>
<term>Earth planet</term>
<term>Earth tides</term>
<term>Earthquake</term>
<term>Earthquake magnitudes</term>
<term>Earthquake prediction</term>
<term>Epicentral</term>
<term>Epicentral distance</term>
<term>Epicentral distances</term>
<term>External factors</term>
<term>Fault</term>
<term>Fault activity</term>
<term>Fleischer</term>
<term>Focal mechanisms</term>
<term>Fracture</term>
<term>Geochemical</term>
<term>Geochemical anomalies</term>
<term>Geochemical precursors</term>
<term>Geochemistry</term>
<term>Geol</term>
<term>Geophys</term>
<term>Goddart</term>
<term>Granitic areas</term>
<term>Groundwater</term>
<term>Haicheng</term>
<term>Hauksson</term>
<term>Heterogeneity</term>
<term>Himachal pradesh</term>
<term>Humanante</term>
<term>Hydrothermal</term>
<term>Hydrothermal systems</term>
<term>Igarashi</term>
<term>Italian alps</term>
<term>Klusman</term>
<term>Kobe earthquake</term>
<term>Latter case</term>
<term>Lett</term>
<term>Literature data</term>
<term>Local conditions</term>
<term>Lungling</term>
<term>Main parameters</term>
<term>Mass spectrometer</term>
<term>Meteorological effects</term>
<term>Methane</term>
<term>Nagamine</term>
<term>Normal faults</term>
<term>Permeability</term>
<term>Pinault</term>
<term>Precursor</term>
<term>Precursory</term>
<term>Precursory time</term>
<term>Precursory time intervals</term>
<term>Prospection geochimique</term>
<term>Pure appl</term>
<term>Radon</term>
<term>Radon activities</term>
<term>Radon anomalies</term>
<term>Radon concentration</term>
<term>Radon concentrations</term>
<term>Radon data</term>
<term>Radon emanation</term>
<term>Radon monitoring</term>
<term>Radon variations</term>
<term>Reimer</term>
<term>Relative amplitudes</term>
<term>Sato</term>
<term>Science reviews</term>
<term>Seismic</term>
<term>Seismic activity</term>
<term>Seismic faults</term>
<term>Seismicity</term>
<term>Shapiro</term>
<term>Signal processing</term>
<term>Soil gases</term>
<term>Soil moisture</term>
<term>Southern spain</term>
<term>Spring gases</term>
<term>Sugisaki</term>
<term>Sugiura</term>
<term>Tangshan</term>
<term>Tangshan earthquake</term>
<term>Taschkent</term>
<term>Tectonic</term>
<term>Tectonophysics</term>
<term>Teng</term>
<term>Thermal springs</term>
<term>Thermal waters</term>
<term>Toutain</term>
<term>Transects</term>
<term>Travertine deposits</term>
<term>Uctuations</term>
<term>Uids</term>
<term>Uranium exploration</term>
<term>Virk</term>
<term>Volcanic</term>
<term>Volcanic environments</term>
<term>Wakita</term>
<term>Wide range</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Bulgarie</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Séisme</term>
<term>Géochimie</term>
<term>Eau souterraine</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Publications on soil and spring gases have been examined regarding their relationships with both tectonic and seismic activities. The main sources, behaviours and uses of species detected in soils and springs are displayed, and their mode of sampling and analysing briefly described. The main patterns of degassing in soils are described and we outline the wide range of geochemical signatures as the result of both permeability and mineralogical contrasts. Because thermomineral waters have been in contact with great volumes of crustal rocks at various depths, spring gases might be more representative of the local environment than soil gases. Moreover, gas signature comparisons show that spring gases are much more enriched with deep gases and slightly contaminated by atmospheric gases. Therefore, they can be considered as better samples for identifying precursors of earthquakes. Environmental perturbations are examined, and it is shown from divergent cases that pressure, temperature, soil moisture or earth tides may generate very high perturbations of the degassing process. Such effects demonstrate that no systematic correction law can be proposed and that removing external contributions from gas concentrations must be performed case by case. This demonstrates therefore the need for the simultaneous measurement of external parameters during gas monitoring. A qualitative examination of about 150 claimed precursors proposed in the literature has been reviewed. As noted by previous authors, anomalies appear at distances sometimes much greater than typical source dimensions, and occur in the field of strain higher than 10−9, most of them being in the field of strain higher than 10−8. Taking into account the very high heterogeneity of such a set of data, we can suggest that amplitudes of gas anomalies are independent of both magnitudes and epicentral distances of related earthquakes, suggesting local conditions to control amplitudes. On the contrary, precursory time and duration of anomalies seem to increase both with magnitudes and epicentral distances. Abundant evidence demonstrates the major role of crustal fluids in the earthquake cycle. Many works have outlined the fact that crustal instabilities can appear as the result of low stress/strain perturbations during loading. It has been suggested that motion of fluids may occur at various scales, from microcrack fluid transfer up to changes of hydraulic levels of water tables. The study of subsequent anomalies is expected to supply a tool for earthquake prediction. Following previous authors, we outline the need for further methodological improvements, including the setting up of multiparameter station networks and the simultaneous recording of the main external parameters (atmospheric pressure, water and air temperature, soil moisture) for signal processing.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Centre-Val de Loire</li>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
<li>Région Centre</li>
</region>
<settlement>
<li>Orléans La Source</li>
<li>Toulouse</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Toutain, Jean Paul" sort="Toutain, Jean Paul" uniqKey="Toutain J" first="Jean-Paul" last="Toutain">Jean-Paul Toutain</name>
</region>
<name sortKey="Baubron, Jean Claude" sort="Baubron, Jean Claude" uniqKey="Baubron J" first="Jean-Claude" last="Baubron">Jean-Claude Baubron</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000250 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000250 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:AE517F95086858E601A040174D2E502EB83130F2
   |texte=   Gas geochemistry and seismotectonics: a review
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021